Linear and Non - Linear Systems under Sub - Gaussian ( Α - Stable ) Input

نویسندگان

  • Mario Di Paola
  • Alba Sofi
چکیده

The paper deals with the analysis of linear and non-linear systems under a special class of symmetric α -stable stochastic processes, namely sub-Gaussian excitations. Such processes are defined multiplying the square root of an / 2 α -stable random variable totally skewed to the right by a zero mean normal process with assigned autocorrelation function. Relying on the observation that the sub-Gaussian input may be viewed as a Gaussian process with random amplitude having / 2 α -stable distribution, it is shown that the characteristic function and the probability density function of the response can be obtained from those of the system subject to the underlying Gaussian process by performing simple integrals. It is also observed that linear systems are amenable to closed-form solutions in terms of characteristic function of the response. Appropriate comparisons with the exact solutions and Monte Carlo simulation results demonstrate the accuracy of the procedure in the linear and non-linear cases, respectively. Sommario. Oggetto del presente lavoro è l’analisi di sistemi lineari e non-lineari soggetti a una particolare classe di processi aleatori simmetrici α -stabili, noti come processi subGaussiani. Tali processi sono definiti moltiplicando la radice quadrata di una variabile aleatoria / 2 α -stabile totalmente deviata a destra per un processo aleatorio Gaussiano a media nulla di assegnata funzione di autocorrelazione. Osservando che una forzante subGaussiana può essere considerata come un processo Gaussiano caratterizzato da un’ampiezza aleatoria avente distribuzione / 2 α -stabile, viene mostrato che la funzione caratteristica e la funzione densità di probabilità della risposta possono essere ottenute a partire da quelle del sistema soggetto al processo Gaussiano di base mediante il calcolo di integrali semplici. Si osserva, inoltre, che per sistemi lineari la funzione caratteristica della Università degli Studi di Palermo Meccanica dei Materiali e delle Strutture Vol. 1 (2009), no.1, pp. 55-78 ISSN: 2035-679X Dipartimento di Ingegneria Strutturale Aerospaziale e Geotecnica DISAG Meccanica dei Materiali e delle Strutture | 1 (2009), 1, PP. 55-75 56 risposta può essere determinata in forma chiusa. L’accuratezza della procedura è dimostrata mediante opportuni confronti con le soluzioni esatte nel caso lineare e con i risultati della simulazione Monte Carlo nel caso di sistemi non-lineari.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systems Driven By Alpha-Stable Noises

Introduction and abstract. It has almost become a standard in stochastic mechanics applications of stochastic differential equations that the driving forces are modeled as Gaussian white noises, that is, as scalar or vector Brownian motion increments. However, this modeling may not always lead to responses that comply well with observed data. In particular the tails of the observed response dis...

متن کامل

A Single Machine Capacitated Production Planning Problem Under Uncertainty: A Grey Linear Programming Approach

The production planning is an important problem in most of manufacturing systems in practice. Unlike many researches existing in literature, this problem encounters with great uncertainties in parameters and input data. In this paper, a single machine capacitated production planning problem is considered and a linear programming formulation is presented. The production costs are assumed to be u...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Nonparametric identification of a Wiener system using a stochastic excitation of arbitrarily unknown spectrum

A Wiener system consists of two sequential sub-systems: (i) a linear, dynamic, timeinvariant, asymptotically stable sub-system, followed by (ii) a nonlinear, static (i.e. memoryless), invertible sub-system. Both sub-systems will be identified nonparametrically in this paper, based on observations at only the overall Wiener system's input and output, without any observation of any internal signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009